Ocena:

Obecnie brak opinii czytelników. Ocena opiera się na 24 głosach.
Advanced Linear and Matrix Algebra
Podręcznik ten kładzie nacisk na wzajemne oddziaływanie algebry i geometrii, motywując do studiowania zaawansowanych technik algebry liniowej. Macierze i przekształcenia liniowe są przedstawione jako dwie strony tego samego medalu, a ich związek motywuje do dociekań w całej książce. Opierając się na pierwszym kursie algebry liniowej, książka ta oferuje czytelnikom głębsze zrozumienie abstrakcyjnych struktur, rozkładów macierzy, wieloliniowości i tensorów. Pojęcia opierają się na konkretnych przykładach, oferując przystępne ścieżki do zaawansowanych technik.
Zaczynając od studium przestrzeni wektorowych, które obejmuje współrzędne, izomorfizmy, ortogonalność i projekcje, książka koncentruje się na rozkładach macierzy. Analizowane są liczne rozkłady, w tym rozkłady Shura, widmowe, wartości osobliwych i Jordana. W każdym przypadku autor wiąże nową technikę z już znanymi, aby stworzyć spójny zestaw narzędzi. Tensory i wieloliniowość uzupełniają książkę, wraz z badaniem iloczynu Kroneckera, przekształceń wieloliniowych i iloczynów tensorowych. Sekcje "Extra Topic" rozszerzają podstawową treść o szeroki zakres pomysłów i zastosowań, od rozkładów QR i Cholesky'ego, po mapy liniowe o wartościach macierzy i programowanie półnieskończone. Każdej sekcji towarzyszą ćwiczenia na wszystkich poziomach.
Advanced Linear and Matrix Algebra oferuje studentom matematyki, analizy danych i nie tylko podstawowe narzędzia i koncepcje potrzebne do dalszej nauki. Wciągająca kolorowa prezentacja i częste notatki na marginesach pokazują wizualne podejście autora. Zakłada się pierwszy kurs algebry liniowej opartej na dowodach. Idealne przygotowanie można znaleźć w towarzyszącym tomie autora, Wprowadzenie do algebry liniowej i macierzowej.