
Quantum Mechanics built on Algebraic Geometry: Emerging Physics through Symbolic Computation
Niniejsza książka przedstawia nowatorskie stanowisko dotyczące współczesnej fizyki, a mianowicie mechaniki kwantowej z uwzględnieniem geometrii algebraicznej. Jak wiadomo, geometria algebraiczna jest badaniem obiektów geometrycznych wyznaczonych przez wielomiany, a reprezentacje wielomianów są wszechobecne w fizyce.
Z tego powodu mechanika kwantowa jest również przedmiotem geometrii algebraicznej. Przykładem jest problem wartości własnej. Jest to zbiór równań wielomianowych i tradycyjnie był zagadnieniem algebry liniowej.
Jednak nowoczesna metoda obliczeniowej geometrii algebraicznej dokładnie odkrywa informacje zawarte w wielomianach.
Podejście to nie powinno pozostać jedynie zabawą. Zapoczątkowało ono innowacyjny styl obliczeń struktury elektronowej.
Cele tej nowej metody obejmują jednoczesne określenie funkcji falowych i ruchów jąder lub przewidywanie wymaganej struktury, która wykaże pożądaną właściwość. W związku z tym książka ta wyjaśnia podstawowe idee obliczeniowej geometrii algebraicznej i pokrewnych tematów, takich jak bazy Groebnera, rozkład ideału pierwotnego, moduły D, Galois, klasowa teoria pola itp. Intencją autora nie jest jednak przedstawienie irytującej listy abstrakcyjnych pojęć.
Ma on nadzieję, że czytelnicy będą używać geometrii algebraicznej jako aktywnego narzędzia obliczeń. Z tego powodu niniejsza książka obficie prezentuje modelowe obliczenia, dzięki którym czytelnicy dowiedzą się, jak stosować geometrię algebraiczną w mechanice kwantowej. Czytelnicy zobaczą również, że nowoczesna algebra komputerowa może ułatwić studiowanie, gdy chcesz zastosować abstrakcyjne idee matematyczne do konkretnych problemów fizycznych.