
Metric Foliations and Curvature
Rozmaitości riemannowskie, w szczególności te o dodatniej lub nieujemnej krzywiźnie, są konstruowane z zaledwie kilku za pomocą fibracji metrycznych lub ich deformacji.
Niniejszy tekst dokumentuje niektóre z tych konstrukcji, z których wiele pojawiło się tylko w formie czasopism. Nacisk kładziony jest mniej na samą fibrację, a bardziej na to, jak jej użyć do skonstruowania lub zrozumienia metryki z krzywizną o stałym znaku na danej przestrzeni.